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“The reason why | have postponed for so long these investigations,
which are basic to my other work in this field, is essentially the
following. | found these theories originally by synthetic
considerations. But | soon realized that, as expedient the
synthetic method is for discovery, as difficult it is to give a clear
exposition on synthetic investigations, which deal with objects
that till now have almost exclusively been considered analytically.
After long vacillations, | have decided to use a half synthetic, half
analytic form. | hope my work will serve to bring justification to
the synthetic method besides the analytical one.”

—Sophus Lie, Allgemeine Theorie der partiellen
Differentialgleichungen erster Ordnung, Math. Ann. 9 (1876).
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which are basic to my other work in this field, is essentially the
following. | found these theories originally by synthetic
considerations. But | soon realized that, as expedient the
synthetic method is for discovery, as difficult it is to give a clear
exposition on synthetic investigations, which deal with objects
that till now have almost exclusively been considered analytically.
After long vacillations, | have decided to use a half synthetic, half
analytic form. | hope my work will serve to bring justification to
the synthetic method besides the analytical one.”

—Sophus Lie, Allgemeine Theorie der partiellen
Differentialgleichungen erster Ordnung, Math. Ann. 9 (1876).

tldr; Sophus Lie worked synthetically (via infinitesimals) but
communicated analytically due to a lack of synthetic language.



analytical vs. synthetic

analytical mathematics: build things from set theory

synthetic mathematics: find models of axiomatic systems from
existing systems.
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an infinitesimal injection

R will be our “reals” and D our “infinitesimals”
axiom v1: Let D := {d € R : d?> = 0}. Then any function
g: D — R is of the form

g(d) =a+ bd

for some unique a,b € R.

Given f: R — R, define its derivative at x € R as follows:
Let g(d) == f(x + d).

By axiom v1, g(d) = g(0) + bd = f(x) + bd. Take

f'(x)=b
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Every function R — R has a derivative!

Is this a problem?

Theorem: Assuming axiom vl: R = {0}

the proof contains a line “for d € D, either d =0 or d # 0."
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run away!!! run away!!!

Do we...

change our axiom? NO
weaken our logic? YES

say goodbye to classical logic
say hello to intuitionistic logic

intuitionistic logic = classical logic - (p V —p)
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in the bargaining stage of grief

In short, we trade LEM for our axiom.

Now, =(R = {0}) because we cannot use the statement “for
de D, either d =0o0r d#0".

In fact, axiom vl — LEM gives R is a field.
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a field with nilpotents

For R to be a field, we need
(x#0) = xisinvertible
or in the contrapositive

x is not invertible = —(x #0)

Infintesimals d with d? = 0 are not invertible, so

d is not non-zero
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neither the thing or not the thing

If d is NOT non-zero, is d = 07
theorem: D # {0}.
Competing facts:

e JdeD,d#0

o VdeD,—(d#0)

With LEM out of our way, no problem.
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jumping ahead

Nilsquares aren't subtle enough to work in multivariable settings.

define: An infinitesimal object is a subset C C R" defined by
polynomial equations such that, for any (¢;) € C, each ¢; is
nilpotent.

example: (di, d», d3, ds) € R* such that
B=di=ds=d}=0 , di+did+d*=0

final axiom: If C is an infinitesimal object, every function

f: C — R is uniquely determined by a polynomial or power series
in C.
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smoothness
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smooth structure

microlinearity “=

Categorical notions determine if a set is “smooth”

(definition) A set M is called microlinear if any diagram of
infinitesimal objects perceived by R as a colimit is also perceived
by M as a colimit.

Translation: “all local infinitesimal structure possessed by R is
possessed by microlinear sets”

(examples) R, R" , products of microlinear, limits of microlinear

(e.g. zero-sets of type R" — R ), MX for M microlinear and X
any set.
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differential geometry basics
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finally, differential geometry

(definition) Let M be microlinear and m € M. A tangent vector
to M at mis any map t: D — M with t(0) = m.

(prop) T,,M is a vector space.

(definition) Let f: M — N be a map between microlinear sets.
The differential of f at mis dp,f: Tp,yM — Tg, N given by

(dmf (t))(d) = f(t(d))

(prop) dpf is a linear map.

(definition) For M microlinear, its tangent bundle is TM = MP.

ii5)



(definition) A Lie group is a microlinear group

This includes classical Lie groups and more.
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(definition) A Lie group is a microlinear group
This includes classical Lie groups and more.
(definition) A Lie algebra of a Lie group G is T.G.

(bracket) Let X, Y € T.G, thatis X, Y: D — G. Define
X*Y:DxD— G by

(d,e) = X(d)Y(e)X(=d)Y(—e)
By microlinearity, this determines a map
[X,Y]: D— G

satisfying bracket equations.
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vector fields

(definition) A vector field on M is a section of TM := MP.
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vector fields

(definition) A vector field on M is a section of TM := MP.

But we have
M — MP

MxD— M
D — MM

So a vector field on M IS a tangent vector on the microlinear set
MM.

(theorem) The set of vector fields on M coincides with T;y(M™M)
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a model of synthetic differential geometry
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Everything so far follows straight from axioms. But axioms are
cheap without models.

We will construct a model using “set theory”.
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Everything so far follows straight from axioms. But axioms are

cheap without models.
We will construct a model using “set theory”.

Given a sufficiently nice category (i.e. a topos), we

take objects as “sets”
arrows are “functions”
(co)limits as logical operations, e.g. {x|f(x) = g(x)} is an

equalizer.
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Let's build a “set theory” for sdg.

(definition) A C* -ring is a ring A equipped with, for every
smooth function f: R” — R, amap 7: A" — A satisfying some
conditions. This gives a category C*°Rng

C*°Rng°®P includes smooth manifolds via an embedding
M — smooth functions of type M — R,

(F: M= N)— (f": {N =R} - {M — R})

C*°Rng®® includes infinitesimal objects:

R[e] = R[x]/(x*)
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C°°Rng®P isn't nice enough yet.

equip it with a suitable Grothendieck topology (a generalization of
open sets to a category)
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make it nice

C°°Rng®P isn't nice enough yet.

equip it with a suitable Grothendieck topology (a generalization of
open sets to a category)

The category of sheaves C*°Rng°®? — Set is a sufficiently nice
category in which our axiom is true.

That is, synthetic differential geometry is real

(whatever that means).
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thanks
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