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“The reason why I have postponed for so long these investigations,

which are basic to my other work in this field, is essentially the

following. I found these theories originally by synthetic

considerations. But I soon realized that, as expedient the

synthetic method is for discovery, as difficult it is to give a clear

exposition on synthetic investigations, which deal with objects

that till now have almost exclusively been considered analytically.

After long vacillations, I have decided to use a half synthetic, half

analytic form. I hope my work will serve to bring justification to

the synthetic method besides the analytical one.”

–Sophus Lie, Allgemeine Theorie der partiellen

Differentialgleichungen erster Ordnung, Math. Ann. 9 (1876).

tldr; Sophus Lie worked synthetically (via infinitesimals) but

communicated analytically due to a lack of synthetic language.
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analytical vs. synthetic

analytical mathematics: build things from set theory

synthetic mathematics: find models of axiomatic systems from

existing systems.
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building our axioms
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an infinitesimal injection

R will be our “reals” and D our “infinitesimals”

axiom v1: Let D := {d ∈ R : d2 = 0}. Then any function

g : D → R is of the form

g(d) = a + bd

for some unique a, b ∈ R.

Given f : R → R, define its derivative at x ∈ R as follows:

Let g(d) := f (x + d).

By axiom v1, g(d) = g(0) + bd = f (x) + bd . Take

f ′(x) := b
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what have we done?!!?!?

Every function R → R has a derivative!

Is this a problem?

Theorem: Assuming axiom v1: R = {0}

the proof contains a line “for d ∈ D, either d = 0 or d 6= 0.”
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run away!!! run away!!!

Do we...

change our axiom? NO

weaken our logic? YES

say goodbye to classical logic

say hello to intuitionistic logic

intuitionistic logic := classical logic - (p ∨ ¬p)
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in the bargaining stage of grief

In short, we trade LEM for our axiom.

Now, ¬(R = {0}) because we cannot use the statement “for

d ∈ D, either d = 0 or d 6= 0”.

In fact, axiom v1 – LEM gives R is a field.
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a field with nilpotents

For R to be a field, we need

(x 6= 0) ⇒ x is invertible

or in the contrapositive

x is not invertible ⇒ ¬(x 6= 0)

Infintesimals d with d2 = 0 are not invertible, so

d is not non-zero
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neither the thing or not the thing

If d is NOT non-zero, is d = 0?

theorem: D 6= {0}.

Competing facts:

• ∃d ∈ D, d 6= 0

• ∀d ∈ D, ¬(d 6= 0)

With LEM out of our way, no problem.
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jumping ahead

Nilsquares aren’t subtle enough to work in multivariable settings.

define: An infinitesimal object is a subset C ⊆ Rn defined by

polynomial equations such that, for any (ci ) ∈ C , each ci is

nilpotent.

example: (d1, d2, d3, d4) ∈ R4 such that

d3
1 = d4

2 = d2
3 = d2

4 = 0 , d1 + d1d2 + d3 = 0

final axiom: If C is an infinitesimal object, every function

f : C → R is uniquely determined by a polynomial or power series

in C .
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smoothness
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microlinearity “=” smooth structure

Categorical notions determine if a set is “smooth”

(definition) A set M is called microlinear if any diagram of

infinitesimal objects perceived by R as a colimit is also perceived

by M as a colimit.

Translation: “all local infinitesimal structure possessed by R is

possessed by microlinear sets”

(examples) R, Rn , products of microlinear, limits of microlinear

(e.g. zero-sets of type Rn → R ), MX for M microlinear and X

any set.
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differential geometry basics
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finally, differential geometry

(definition) Let M be microlinear and m ∈ M. A tangent vector

to M at m is any map t : D → M with t(0) = m.

(prop) TmM is a vector space.

(definition) Let f : M → N be a map between microlinear sets.

The differential of f at m is dmf : TmM → TfmN given by

(dmf (t))(d) = f (t(d))

(prop) dmf is a linear map.

(definition) For M microlinear, its tangent bundle is TM := MD .
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Lie groups

(definition) A Lie group is a microlinear group

This includes classical Lie groups and more.

(definition) A Lie algebra of a Lie group G is TeG .

(bracket) Let X ,Y ∈ TeG , that is X ,Y : D → G . Define

X ∗ Y : D × D → G by

(d , e) 7→ X (d)Y (e)X (−d)Y (−e)

By microlinearity, this determines a map

[X ,Y ] : D → G

satisfying bracket equations.
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vector fields

(definition) A vector field on M is a section of TM := MD .

But we have
M → MD

M × D → M
D → MM

So a vector field on M IS a tangent vector on the microlinear set

MM .

(theorem) The set of vector fields on M coincides with Tid(MM)
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a model of synthetic differential geometry
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show me a sdg

Everything so far follows straight from axioms. But axioms are

cheap without models.

We will construct a model using “set theory”.

Given a sufficiently nice category (i.e. a topos), we

take objects as “sets”

arrows are “functions”

(co)limits as logical operations, e.g. {x |f (x) = g(x)} is an

equalizer.
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Let’s build a “set theory” for sdg.

(definition) A C∞ -ring is a ring A equipped with, for every

smooth function f : Rn → R, a map f̂ : An → A satisfying some

conditions. This gives a category C∞Rng

C∞Rngop includes smooth manifolds via an embedding

M 7→ smooth functions of type M → R,

(f : M → N) 7→ (f ∗ : {N → R} → {M → R})

C∞Rngop includes infinitesimal objects:

R[ε] := R[x ]/(x2)
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make it nice

C∞Rngop isn’t nice enough yet.

equip it with a suitable Grothendieck topology (a generalization of

open sets to a category)

The category of sheaves C∞Rngop → Set is a sufficiently nice

category in which our axiom is true.

That is, synthetic differential geometry is real

(whatever that means).
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thanks
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