Rewriting structured cospans Daniel Cicala

SYCO 4 22 May 2019

- part i. motivation
- part ii. structured cospans
- part iii. rewriting structured cospans
- part iv. inductive rewriting

part i. motivation

Systems abound.

natural sciences	chemical reactions
	ecological systems
	classical and quantum physical systems

social sciences social networks WORLD3 model

engineering power grid hardware and software networks logistics The grand ambition is...

to create a general mathematical theory for compositional systems

How do we embark on creating a fully general mathematical theory of systems?

look to linguistics

Syntax vs. Semantics

syntaxrules of grammar and sentence compositionsemanticsmeaning of words and sentences

ingredients for syntax

- _ "alphabet" for systems
- _ rules for combining "letters" and "words"

field-specific alphabet examples

$$\begin{array}{c} A \xrightarrow{} B \\ A+C \longrightarrow D \\ & \\ B+E \end{array}$$

CHEMICAL REACTION

Network

Control Network

Feynman Diagram

a toy example illustrating our goals.

 $_$ Our goal is to

... create syntax for compositional systems (*Baez, Courser*) ... onto these terms, introduce rewriting

 $_$ Compositional systems requires composing together systems to create new systems.

Make systems the arrows of a category!

 $_$ To rewrite systems, we borrow from the theory of adhesive categories or, more strictly, topos theory.

Make systems the objects of a topos!

make systems arrows in a category

+ make systems objects in a topos

use double categories

part ii. structured cospans

part iia. structured cospans as arrows

How to read a structured cospan:

$\texttt{inputs} \rightarrow \texttt{system} \gets \texttt{outputs}$

This is a diagram in a category. How do we tame this data?

Given an adjunction

between topoi a structured cospan is a diagram in X of form

$$La \rightarrow x \leftarrow Lb$$

theorem. (Baez, Courser)

structured cospans as arrows

We fit open graphs into this framework using the adjunction

defined by

La := edgeless graph with node set a

Rg := underlying set of nodes of g

structured cospans as arrows

is of the form $La \rightarrow x \leftarrow Lb$ where

La is a three element set Lb is a two element set part iib. structured cospans as objects

The mechanisms of rewriting are designed for *objects* of a category.

definition.

The mechanisms for rewriting work for the objects of a topos.

theorem. (dc)

The category $_L$ StrCsp is a topos.

part iii. rewriting

part iiia. double pushout rewriting

example.

Suppose we model the internet with graphs via

nodes := websitesedges := links

but are uninterested in self-linking websites.

Double pushout rewriting was axiomatised using **adhesive categories**, of which topoi are an example.

definition.

_ A rewrite rule is a span with monic legs in a topos:

$$\ell \leftarrow k \rightarrowtail r$$

- A **grammar** is a pair (X, P) with X a topos and P a set of rewrite rules in X.

definition.

 Given a grammar, a derived rewrite rule is one that appears at the bottom of a DPO diagram

$$\begin{array}{ccc} \ell \longleftrightarrow k \rightarrowtail r \\ \downarrow \neg & \downarrow & \sqcap \downarrow \\ g \longleftrightarrow d \rightarrowtail h \end{array}$$

with the top row belonging to P.

- The rewrite relation on a grammar g →* h is the transitive and reflexive closure of the relation induced by the derived rewrite rules. part iii. rewriting

part iiib. rewriting structured cospans

Because $_L$ StrCsp is a topos, we can rewrite structured cospans.

A **rewrite rule of structured cospans** is a commuting diagram of form

taken up to isomorphism.

Here is a rewrite rule of open graphs

rewriting

rewriting structured cospans

Here is a derived rewrite rule of open graphs

rewriting

theorem. (dc)

between topoi with L preserving pullbacks, there is a symmetric monoidal double category $_L \mathbb{R} \text{ewrite comprised of}$

- objects the objects of A
- ver. arrows isomorphisms in A
- **hor. arrows** structured cospans $La \rightarrow x \leftarrow Lb$
- squares rewrites of structured cospans La

$$\begin{array}{c} La \to x \leftarrow Lb \\ \cong \uparrow \qquad \uparrow \qquad \uparrow \cong \\ Lc \to y \leftarrow Ld \\ \cong \downarrow \qquad \downarrow \qquad \downarrow \cong \\ Le \to z \leftarrow Lf \end{array}$$

part iv. inductive rewriting part iva. background

Given a closed system, we want to capture all of its rewritings.

The previous section discussed *operational rewriting*, where the class of rewritings is obtained by *applying* rewrite rules.

Inductive rewriting builds this class from a set of basic rewritings.

inductive rewriting

_ Decompose a closed system into "basic" open subsystems

background

_ Rewrite basic open subsystems to generate all rewritings

The basic open subsystems come from a grammar.

starting data.

- $_{\scriptscriptstyle -}$ a grammar (X, P) for X a topos
- _ $L \dashv R$: A \rightleftharpoons X with monic counit & L pullback preserving

example.

definition.

Given

- $_{-}$ a grammar (X, P)
- _ $L \dashv R \colon \mathsf{A} \rightleftharpoons \mathsf{X}$ with monic counit ε
- a discrete grammar (X, P_{LR}) has rewrite rules

$$\ell \longleftrightarrow k \xleftarrow{\varepsilon} LRk \xrightarrow{\varepsilon} k \rightarrowtail r$$

for each rewrite rule

$$\ell \longleftrightarrow k \rightarrowtail r$$

background

If P has a rewriting rule

the associated rule in ${\cal P}_{LR}$ is

part iv inductive rewriting part ivb. characterization results

theorem. (dc)

- (X, P) is a grammar $L \dashv R: X \rightleftharpoons A: R \text{ has a monic counit } \varepsilon$
- _ $\ell \leftarrow k \rightarrow r$ in *P* implies Sub(*k*) has all meets.

The rewriting relation for (X, P) and (X, P_{LR}) are equal.

*this generalizes a result in DPO graph rewriting by Ehrig, et. al.

definition.

We can functorially assign a grammar ($_L$ StrCsp, P) to its <i>language</i> ,	
	$Lang(_{L}StrCsp, P),$
the double category comprised of	
objects vert. arrows hor. arrows squares	objects from A invertible legged spans in A structured cospans generated by the rewrites derived from <i>P</i>

definition.

 $_{-}$ (X, P) is a grammar. _ $(L \dashv R)$: X \rightleftharpoons A has a monic counit Define $(_L \text{StrCsp}, \widehat{P}_{LR})$ to have rewrites LR0 $\ell \longleftarrow IRk$ LRk - $\rightarrow \ell \longleftarrow LR0$ \cong ≅ \cong | ≃ $LR0 \longrightarrow LRk \longleftarrow LRk$ and LRk - $\rightarrow LRk \longleftarrow$ -LR0 \cong \cong \simeq | ≃ L.R.k LR0for each $\ell \leftarrow k \rightarrow r$ in *P*.

theorem. (dc)

*this generalizes work by Gadducci and Heckel

the end