Generalizing Lawvere theories

(an exposition on *Notions of Lawvere Theories* by Lack & Rosicky)

Daniel Cicala

17 July 2017

University of California at Riverside

what do we hope to achieve?

Three tracks of generalization

- replace finite products with another class
- replace the base category in which models are taken
- everything enriched

Properties of classical Lawvere theory to retain

- Lawvere theory monad correspondence
- algebraic functors have left adjoints
- reflectiveness of models

Three tracks of generalization

- replace finite products with another class
- replace the base category in which models are taken
- everything enriched

Properties of classical Lawvere theory to retain

- Lawvere theory monad correspondence
- algebraic functors have left adjoints
- reflectiveness of models

the terminology of presentability

Let Φ be a class of limits

(def) A C-object x is Φ -presentable if

 $C(x, -) : C \rightarrow Set$

preserves any colimit that commutes with limits in Φ .

Denote the full subcategory of Φ -presentable objects by \mathbf{C}_{Φ} .

replacing finite products

We are now entering the world of $\ensuremath{\mathcal{V}}\xspace$ -categories where

- $\ensuremath{\mathcal{V}}$ is symmetric closed monoidal plus complete and co-complete
- Φ is a class of **weights**,

(?) In order to construct an analogy

classical Lawvere theory	general Lav	vvere theory	
finite products	Φ-li		

what should Φ-limits be?

We are now entering the world of $\ensuremath{\mathcal{V}}\xspace$ -categories where

- $\ensuremath{\mathcal{V}}$ is symmetric closed monoidal plus complete and co-complete
- Φ is a class of weights,
 - \downarrow functors $J^{\mathsf{op}} \to \mathcal{V}$ required to define enriched (co)limits
- (?) In order to construct an analogy

classical Lawvere theory	\leftrightarrow	general Lawvere theory	
finite products		Φ-limits	

what should Φ -limits be?

(axiom A) All Φ -limits commute in \mathcal{V} with colimits that have Φ -continuous weights.

This is an abstraction of

• finite limits commuting with filtered colimits in Set

What Φ satisfies axiom A?

(axiom A) All Φ -limits commute in \mathcal{V} with colimits that have Φ -continuous weights.

This is an abstraction of

• finite limits commuting with filtered colimits in **Set**

What Φ satisfies axiom A?

(axiom A) All Φ -limits commute in \mathcal{V} with colimits that have Φ -continuous weights.

This is an abstraction of

 $\bullet\,$ finite limits commuting with filtered colimits in ${\bf Set}$

What Φ satisfies axiom A?

Given a collection $\mathbb D$ of small categories that satisfy some axioms, we can construct viable $\Phi.$

no time for that...

Instead, here is an example

(ex) ($\mathbb{D} :=$ finite categories) \Rightarrow ($\Phi =$ enriched finite limits)

Given a collection $\mathbb D$ of small categories that satisfy some axioms, we can construct viable $\Phi.$

no time for that...

Instead, here is an example

(ex) $(\mathbb{D} := \text{finite categories}) \Rightarrow (\Phi = \text{enriched finite limits})$

a correspondence between Lawvere $\Phi\text{-theories}$ & monads

So far, we have

replaced ordinary categories with $\mathcal V\text{-}categories$

- and -

replaced finite products with Φ -limits via axiom A

To obtain the **Lawvere theory-monad correspondence**, we generalize the base category by assuming...

(axiom B) fix a \mathcal{V} -category \mathcal{K} with finite limits and is equivalent to Φ -Cts $(\mathcal{K}_{\Phi}, \mathcal{V})$

So far, we have

replaced ordinary categories with $\mathcal V\text{-}\mathsf{categories}$

- and -

replaced finite products with Φ -limits via axiom A

To obtain the **Lawvere theory-monad correspondence**, we generalize the base category by assuming...

(axiom B) fix a V-category \mathcal{K} with finite limits and is equivalent to Φ -Cts $(\mathcal{K}_{\Phi}, \mathcal{V})$

(def) A Lawvere Φ -theory is a \mathcal{V} -functor $\mathcal{K}^{op}_{\Phi} \to \mathcal{T}$ that is bijective-on-objects and Φ -continuous

 $\mathsf{Law}_{\Phi}(\mathcal{K}) \coloneqq \begin{cases} \mathsf{(objects)} & \mathsf{Lawvere} \ \Phi \text{-theories} \\ \mathsf{(morphisms)} & \mathsf{commuting triangles} \end{cases}$ For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_{\star} \to \mathcal{T}$

 $\mathbf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq \begin{cases} \mathbf{(objects)} & \mathcal{V}\text{-functors } \mathcal{T} \to \mathcal{K} \text{ s.t.} \\ & \mathcal{K}_{\Phi}^{op} \to \mathcal{T} \to \mathcal{K} \text{ is } \Phi\text{-continuous.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \end{cases}$ $\mathbf{Mnd}_{\Phi}(\mathcal{K}) \coloneqq \begin{cases} \mathbf{(objects)} & \mathcal{V}\text{-monads on } \mathcal{K} \text{ that preserve} \\ & \Phi\text{-flat colimits.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \end{cases}$

(def) A Lawvere Φ -theory is a \mathcal{V} -functor $\mathcal{K}_{\Phi}^{op} \to \mathcal{T}$ that is bijective-on-objects and Φ -continuous

 $\mathsf{Law}_{\Phi}(\mathcal{K}) := \begin{cases} \mathsf{(objects)} & \mathsf{Lawvere } \Phi \text{-theories} \\ \mathsf{(morphisms)} & \mathsf{commuting triangles} \end{cases}$

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_{\Phi} \to \mathcal{T}$

$$\begin{split} \mathbf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) &\coloneqq \left\{ \begin{array}{ll} \mathbf{(objects)} & \mathcal{V}\text{-functors }\mathcal{T} \to \mathcal{K} \text{ s.t.} \\ & \mathcal{K}_{\Phi}^{\mathsf{op}} \to \mathcal{T} \to \mathcal{K} \text{ is } \Phi\text{-continuous.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \\ \mathbf{Mnd}_{\Phi}(\mathcal{K}) &\coloneqq \left\{ \begin{array}{ll} \mathbf{(objects)} & \mathcal{V}\text{-monads on }\mathcal{K} \text{ that preserve} \\ & \Phi\text{-flat colimits.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \end{array} \right. \end{split}$$

(def) A Lawvere Φ -theory is a \mathcal{V} -functor $\mathcal{K}^{\mathsf{op}}_{\Phi} \to \mathcal{T}$ that is bijective-on-objects and Φ-continuous

 $\mathsf{Law}_{\Phi}(\mathcal{K}) := \begin{cases} \mathsf{(objects)} & \mathsf{Lawvere } \Phi \text{-theories} \\ \mathsf{(morphisms)} & \mathsf{commuting triangles} \end{cases}$

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_{\Phi} \to \mathcal{T}$

 $\mathbf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq \left\{ \begin{array}{ll} \textbf{(objects)} & \mathcal{V}\text{-functors } \mathcal{T} \to \mathcal{K} \text{ s.t.} \\ & \mathcal{K}_{\Phi}^{\mathsf{op}} \to \mathcal{T} \to \mathcal{K} \text{ is } \Phi\text{-continuous.} \\ \textbf{(morphisms)} & \text{appropriate natural transformations} \end{array} \right.$ $\mathbf{Mnd}_{\Phi}(\mathcal{K}) \coloneqq \left\{ \begin{array}{ll} \textbf{(objects)} & \mathcal{V}\text{-monads on }\mathcal{K} \text{ that preserve} \\ & \Phi\text{-flat colimits.} \\ \textbf{(morphisms)} & \text{appropriate natural transformations} \end{array} \right.$

(def) A Lawvere Φ -theory is a \mathcal{V} -functor $\mathcal{K}_{\Phi}^{op} \to \mathcal{T}$ that is bijective-on-objects and Φ -continuous

 $\mathsf{Law}_{\Phi}(\mathcal{K}) := \begin{cases} \mathsf{(objects)} & \mathsf{Lawvere} \ \Phi \text{-theories} \\ \mathsf{(morphisms)} & \mathsf{commuting triangles} \end{cases}$

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_\Phi \to \mathcal{T}$

 $\mathbf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq \begin{cases} \mathbf{(objects)} & \mathcal{V}\text{-functors } \mathcal{T} \to \mathcal{K} \text{ s.t.} \\ & \mathcal{K}_{\Phi}^{op} \to \mathcal{T} \to \mathcal{K} \text{ is } \Phi\text{-continuous.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \end{cases}$ $\mathbf{Mnd}_{\Phi}(\mathcal{K}) \coloneqq \begin{cases} \mathbf{(objects)} & \mathcal{V}\text{-monads on } \mathcal{K} \text{ that preserve} \\ & \Phi\text{-flat colimits.} \\ \mathbf{(morphisms)} & \text{appropriate natural transformations} \end{cases}$

First, we define a functor mnd: $Law_{\Phi}(\mathcal{K}) \rightarrow Mnd_{\Phi}(\mathcal{K})$

Define $mnd(\mathcal{T}) \coloneqq m$.

First, we define a functor mnd: $Law_{\Phi}(\mathcal{K}) \rightarrow Mnd_{\Phi}(\mathcal{K})$

 $\begin{array}{c|c} \mbox{(Prop 6.6 in Lack \& Rosicky)} \\ \hline \mbox{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) & \longrightarrow [\mathcal{T},\mathcal{V}] & \mbox{The diagram is a pullback} \\ u & & \downarrow_{[j,V]} & \mbox{and } u \mbox{ is monadic via a} \\ & & & & \\ \mathcal{K} & \xrightarrow{y} [\mathcal{K}^{op},\mathcal{V}] & \xrightarrow{\iota^*} [\mathcal{K}^{op}_{\Phi},\mathcal{V}] & \mbox{Φ-flat colimits.} \end{array}$

Define $mnd(\mathcal{T}) \coloneqq m$.

First, we define a functor mnd: $Law_{\Phi}(\mathcal{K}) \rightarrow Mnd_{\Phi}(\mathcal{K})$

 $\begin{array}{c|c} \mbox{(Prop 6.6 in Lack \& Rosicky)} \\ \hline \mbox{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) & \longrightarrow [\mathcal{T},\mathcal{V}] & \mbox{The diagram is a pullback} \\ u & & \downarrow_{[j,V]} & \mbox{and } u \mbox{ is monadic via a} \\ & & & & \\ \mathcal{K} & \xrightarrow{y} [\mathcal{K}^{op},\mathcal{V}] & \xrightarrow{\iota^*} [\mathcal{K}^{op}_{\Phi},\mathcal{V}] & & \\ \hline \end{array}$

Define $mnd(\mathcal{T}) \coloneqq m$.

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $\mathcal{K} \to \mathcal{K}^m \to \mathcal{K}$

(2nd) Restrict the first \mathcal{V} -functor to \mathcal{K}_{Φ}

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $\mathcal{K} \to \mathcal{K}^m \to \mathcal{K}$

(2nd) Restrict the first V-functor to \mathcal{K}_{Φ}

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^{m}$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $\mathcal{K} \to \mathcal{K}^m \to \mathcal{K}$

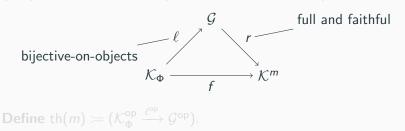
(2nd) Restrict the first \mathcal{V} -functor to \mathcal{K}_{Φ}

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $\mathcal{K} \to \mathcal{K}^m \to \mathcal{K}$

(2nd) Restrict the first \mathcal{V} -functor to \mathcal{K}_{Φ}

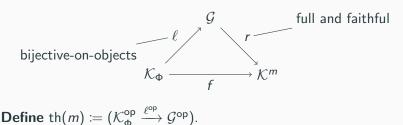
$$f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$$



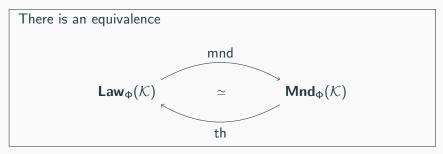
Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $\mathcal{K} \to \mathcal{K}^m \to \mathcal{K}$

(2nd) Restrict the first \mathcal{V} -functor to \mathcal{K}_{Φ}

$$f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$$



A theorem



adjoints to algebraic functors & reflectivity

\bullet We continue with $\mathcal V\text{-}categories$ and a class of limits Φ satisfying axiom A

• We replace our base category given by axiom B with...

(axiom C) fix a \mathcal{V} -category \mathcal{K} with Φ -limits such that $y: \mathcal{K} \to [\mathcal{K}^{op}, \mathcal{V}]$ has a Φ -continuous left adjoint.

Axiom C holds for presheaf categories and, when $\mathcal{V} = \mathbf{Set}$, Grothendieck topoi.

- \bullet We continue with $\mathcal V\text{-}\mathsf{categories}$ and a class of limits Φ satisfying axiom A
- We replace our base category given by axiom B with...

(axiom C) fix a \mathcal{V} -category \mathcal{K} with Φ -limits such that $y: \mathcal{K} \to [\mathcal{K}^{op}, \mathcal{V}]$ has a Φ -continuous left adjoint.

Axiom C holds for presheaf categories and, when $\mathcal{V}=\mathbf{Set}$, Grothendieck topoi.

(def) A Φ -theory is a small \mathcal{V} -category with Φ -limits

In our new context, we have the following two categories

$$\Phi-\mathbf{Th} := \begin{cases} \mathbf{(objects)} & \Phi-\text{theories} \\ \mathbf{(morphisms)} & \text{evident functors} \end{cases}$$

 $\Phi\operatorname{\mathsf{-Mod}}(\mathcal{T}) \coloneqq \Phi\operatorname{\mathsf{-Cts}}(\mathcal{T},\mathcal{K})$

(def) A Φ -theory is a small \mathcal{V} -category with Φ -limits

In our new context, we have the following two categories

$$\Phi-\mathbf{Th} := \begin{cases} \mathbf{(objects)} & \Phi-\text{theories} \\ \mathbf{(morphisms)} & \text{evident functors} \end{cases}$$
$$\Phi-\mathbf{Mod}(\mathcal{T}) := \Phi-\mathbf{Cts}(\mathcal{T},\mathcal{K})$$

adjoints and reflexivity - algebraic functors

(def) An algebraic functor is the pullback functor $g^* \colon \Phi\text{-}\mathbf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathbf{Cts}(\mathcal{S},\mathcal{K})$

induced from a morphism of Φ -theories $g \colon \mathcal{S} \to \mathcal{T}$.

These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map $F \mapsto \operatorname{Lan}_{g} F$ gives a functor $g_{*} : \Phi \operatorname{-} \operatorname{Cts}(S, \mathcal{K}) \to \Phi \operatorname{-} \operatorname{Cts}(\mathcal{T}, \mathcal{K})$ Here's a depiction of the scenario: $S \xrightarrow{F} \mathcal{K}$ $g_{*}(F) = \operatorname{Lan}_{g} F$ 19

adjoints and reflexivity - algebraic functors

(def) An algebraic functor is the pullback functor $g^* \colon \Phi\text{-}\mathbf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathbf{Cts}(\mathcal{S},\mathcal{K})$

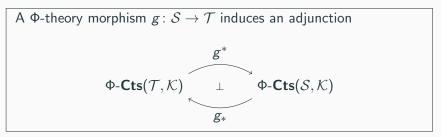
induced from a morphism of Φ -theories $g \colon S \to \mathcal{T}$.

These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map $F \mapsto \operatorname{Lan}_{g} F$ gives a functor $g_* \colon \Phi\operatorname{-}\mathbf{Cts}(\mathcal{S}, \mathcal{K}) \to \Phi\operatorname{-}\mathbf{Cts}(\mathcal{T}, \mathcal{K})$ Here's a depiction of the scenario: $\begin{array}{c} \mathcal{S} \xrightarrow{F} \mathcal{K} \\ \mathcal{F} \xrightarrow{F} \mathcal{K} \\ \mathcal{F} \xrightarrow{F} \mathcal{K} \\ \mathcal{F} \xrightarrow{F} \mathcal{K} \end{array}$ 19

A theorem



Theorem 5.2 in Lack and Rosicky

 Φ -**Cts**(\mathcal{T}, \mathcal{K}) is reflective in [\mathcal{T}, \mathcal{K}]

(pf)

• $\Phi\text{-}{\bf Cts}({\cal FT},{\cal K})\simeq [{\cal T},{\cal K}]$ from the free/forgetful adjunction

- \mathcal{T} has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

 $\mathit{r^*} \colon \Phi\text{-}\mathsf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathsf{Cts}(\mathcal{FT},\mathcal{K}) \simeq [\mathcal{T},\mathcal{K}]$

Theorem 5.2 in Lack and Rosicky

 Φ -**Cts**(\mathcal{T}, \mathcal{K}) is reflective in [\mathcal{T}, \mathcal{K}]

(pf)

• $\Phi\text{-}\mathsf{Cts}(\mathcal{FT},\mathcal{K})\simeq [\mathcal{T},\mathcal{K}]$ from the free/forgetful adjunction

- \mathcal{T} has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

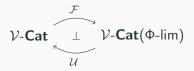
$$\mathit{r^*} \colon \Phi\text{-}\mathsf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathsf{Cts}(\mathcal{FT},\mathcal{K}) \simeq [\mathcal{T},\mathcal{K}]$$

Theorem 5.2 in Lack and Rosicky

 Φ -**Cts**(\mathcal{T}, \mathcal{K}) is reflective in [\mathcal{T}, \mathcal{K}]

(pf)

• $\Phi\text{-}{\bf Cts}({\cal FT},{\cal K})\simeq [{\cal T},{\cal K}]$ from the free/forgetful adjunction



- \mathcal{T} has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

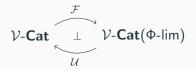
 $\mathit{r^*} \colon \Phi\text{-}\mathbf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathbf{Cts}(\mathcal{FT},\mathcal{K}) \simeq [\mathcal{T},\mathcal{K}]$

Theorem 5.2 in Lack and Rosicky

 Φ -**Cts**(\mathcal{T}, \mathcal{K}) is reflective in [\mathcal{T}, \mathcal{K}]

(pf)

• $\Phi\text{-}\mathsf{Cts}(\mathcal{FT},\mathcal{K})\simeq [\mathcal{T},\mathcal{K}]$ from the free/forgetful adjunction



- \mathcal{T} has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

$$r^* \colon \Phi\text{-}\mathbf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathbf{Cts}(\mathcal{FT},\mathcal{K}) \simeq [\mathcal{T},\mathcal{K}]$$

thank you