Generalizing Lawvere theories

(an exposition on Notions of Lawvere Theories by Lack & Rosicky)

Daniel Cicala

17 July 2017

University of California at Riverside

what do we hope to achieve?

Three tracks of generalization

- replace finite products with another class
- replace the base category in which models are taken
- everything enriched

Properties of classical Lawvere theory to retain

-
- algebraic functors have left adjoints
-

Three tracks of generalization

- replace finite products with another class
- replace the base category in which models are taken
- everything enriched

Properties of classical Lawvere theory to retain

- Lawvere theory monad correspondence
- algebraic functors have left adjoints
- reflectiveness of models

the terminology of presentability

Let Φ be a class of limits

(def) A C-object x is Φ -presentable if

 $C(x, -): C \rightarrow Set$

preserves any colimit that commutes with limits in Φ.

Denote the full subcategory of Φ -presentable objects by C_{Φ} .

replacing finite products

We are now entering the world of $\mathcal V$ -categories where

- V is symmetric closed monoidal plus complete and co-complete
- \bullet Φ is a class of weights,
	- $\mathsf{L}\models$ functors $J^\mathsf{op}\to\mathcal{V}$ required to define enriched (co)limits

(?) In order to construct an analogy

what should Φ-limits be?

We are now entering the world of $\mathcal V$ -categories where

- V is symmetric closed monoidal plus complete and co-complete
- \bullet Φ is a class of weights,
	- $\mathsf{L}\models$ functors $J^\mathsf{op}\to\mathcal{V}$ required to define enriched (co)limits
- (?) In order to construct an analogy

what should Φ-limits be?

(axiom A) All Φ -limits commute in $\mathcal V$ with colimits that have Φ-continuous weights.

• finite limits commuting with filtered colimits in Set

What Φ satisfies axiom A?

(axiom A) All Φ-limits commute in V with colimits that have Φ-continuous weights.

This is an abstraction of

• finite limits commuting with filtered colimits in Set

What Φ satisfies axiom A?

(axiom A) All Φ-limits commute in V with colimits that have Φ-continuous weights.

This is an abstraction of

• finite limits commuting with filtered colimits in Set

What Φ satisfies axiom A?

Given a collection D of small categories that satisfy some axioms, we can construct viable Φ.

no time for that...

 (ex) ($\mathbb{D} :=$ finite categories) \Rightarrow $(\Phi =$ enriched finite limits)

Given a collection D of small categories that satisfy some axioms, we can construct viable Φ.

no time for that...

Instead, here is an example

 (ex) (\mathbb{D} := finite categories) \Rightarrow (Φ = enriched finite limits)

a correspondence between Lawvere Φ-theories & monads So far, we have

replaced ordinary categories with V-categories

 $-$ and $-$

replaced finite products with Φ-limits via axiom A

To obtain the Lawvere theory-monad correspondence, we

(axiom B) fix a V-category K with finite limits and is equivalent to Φ -Cts($\mathcal{K}_\Phi, \mathcal{V}$)

So far, we have

replaced ordinary categories with $\mathcal V$ -categories

 $-$ and $-$

replaced finite products with Φ-limits via axiom A

To obtain the Lawvere theory-monad correspondence, we generalize the base category by assuming...

(axiom B) fix a V-category K with finite limits and is equivalent to Φ -**Cts**(\mathcal{K}_{Φ} , \mathcal{V})

(def) A Lawvere Φ-theory is a $\mathcal{V}\text{-}\mathsf{functor}\ \mathcal{K}_\Phi^\mathrm{op}\to \mathcal{T}$ that is bijective-on-objects and Φ-continuous

Law $_{\Phi}(\mathcal{K}) \coloneqq$ ((objects) Lawvere Φ-theories (morphisms) commuting triangles For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_{\Phi} \to \mathcal{T}$

 $\mathsf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq$ $\sqrt{ }$ (**objects**) V -functors $\mathcal{T} \to \mathcal{K}$ s.t.
 $K^{\text{op}} \to \mathcal{T} \to K$ is there (morphisms) appropriate natural transformations $\mathcal{K}_\Phi^{\mathsf{op}} \to \mathcal{T} \to \mathcal{K}$ is Φ -continuous. $\mathsf{Mnd}_\Phi(\mathcal K) \coloneqq$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ \int (objects) V -monads on K that preserve (morphisms) appropriate natural transformations Φ-flat colimits.

(def) A Lawvere Φ-theory is a $\mathcal{V}\text{-}\mathsf{functor}\ \mathcal{K}_\Phi^\mathrm{op}\to \mathcal{T}$ that is bijective-on-objects and Φ-continuous

Law $_{\Phi}(\mathcal{K}) \coloneqq$ ((objects) Lawvere Φ-theories (morphisms) commuting triangles

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_{\Phi} \to \mathcal{T}$

 $\mathsf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq$ $\sqrt{ }$ (**objects**) V -functors $\mathcal{T} \to \mathcal{K}$ s.t.
 $K^{\text{op}} \to \mathcal{T} \to K$ is there (morphisms) appropriate natural transformations $\mathcal{K}_\Phi^{\mathsf{op}} \to \mathcal{T} \to \mathcal{K}$ is Φ -continuous. $\mathsf{Mnd}_\Phi(\mathcal K) \coloneqq$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ \int (objects) V -monads on K that preserve (morphisms) appropriate natural transformations Φ-flat colimits.

(def) A Lawvere Φ-theory is a $\mathcal{V}\text{-}\mathsf{functor}\ \mathcal{K}_\Phi^\mathrm{op}\to \mathcal{T}$ that is bijective-on-objects and Φ-continuous

Law $_{\Phi}(\mathcal{K}) \coloneqq$ ((objects) Lawvere Φ-theories (morphisms) commuting triangles

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_\Phi \to \mathcal{T}$

 $\mathsf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (objects) V -functors $\mathcal{T} \to \mathcal{K}$ s.t. $\mathcal{K}^{\mathsf{op}}_\Phi \to \mathcal{T} \to \mathcal{K}$ is Φ -continuous. (morphisms) appropriate natural transformations

 $\mathsf{Mnd}_\Phi(\mathcal K) \coloneqq$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ J $\overline{\mathcal{L}}$ (objects) V -monads on K that preserve Φ-flat colimits. (morphisms) appropriate natural transformations

(def) A Lawvere Φ-theory is a $\mathcal{V}\text{-}\mathsf{functor}\ \mathcal{K}_\Phi^\mathrm{op}\to \mathcal{T}$ that is bijective-on-objects and Φ-continuous

Law $_{\Phi}(\mathcal{K}) \coloneqq$ ((objects) Lawvere Φ-theories (morphisms) commuting triangles

For a Lawvere theory $\mathcal{K}^{\mathsf{op}}_\Phi \to \mathcal{T}$

 $\mathsf{Mod}_{\Phi}(\mathcal{T},\mathcal{K}) \coloneqq$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (objects) V -functors $\mathcal{T} \to \mathcal{K}$ s.t. $\mathcal{K}^{\mathsf{op}}_\Phi \to \mathcal{T} \to \mathcal{K}$ is Φ -continuous. (morphisms) appropriate natural transformations $\mathsf{Mnd}_\Phi(\mathcal{K}) \coloneqq$ $\sqrt{ }$ \int \mathcal{L} (objects) V -monads on K that preserve Φ-flat colimits. (morphisms) appropriate natural transformations

First, we define a functor mnd: $\mathsf{Law}_{\Phi}(\mathcal{K}) \to \mathsf{Mnd}_{\Phi}(\mathcal{K})$

Define mnd $(T) := m$.

First, we define a functor mnd: $\mathsf{Law}_{\Phi}(\mathcal{K}) \to \mathsf{Mnd}_{\Phi}(\mathcal{K})$

Define mnd $(T) := m$.

First, we define a functor mnd: $\mathsf{Law}_{\Phi}(\mathcal{K}) \to \mathsf{Mnd}_{\Phi}(\mathcal{K})$

Define mnd $(\mathcal{T}) := m$.

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ **(1st)** Factor $m \in \text{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $K \to K^m \to K$

(2nd) Restrict the first V-functor to K_{Φ}

Φ

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$

Let's define another functor th: $Mnd_{\Phi}(\mathcal{K}) \rightarrow Law_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $K \to K^m \to K$

(2nd) Restrict the first V-functor to K_{Φ}

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $K \to K^m \to K$

(2nd) Restrict the first V-functor to K_{Φ}

 $f: \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $K \to K^m \to K$

(2nd) Restrict the first V-functor to K_{Φ}

$$
f\colon \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m
$$

Let's define another functor th: $\mathsf{Mnd}_{\Phi}(\mathcal{K}) \to \mathsf{Law}_{\Phi}(\mathcal{K})$ (1st) Factor $m \in \mathsf{Mnd}_{\Phi}(\mathcal{K})$ through the EM-category $K \to K^m \to K$

(2nd) Restrict the first V-functor to K_{Φ}

$$
f\colon \mathcal{K}_{\Phi} \to \mathcal{K} \to \mathcal{K}^m
$$

A theorem

adjoints to algebraic functors & reflectivity

• We continue with V-categories and a class of limits Φ satisfying axiom A

• We replace our base category given by axiom B with...

(axiom C) fix a V -category K with Φ -limits such that $y\colon \mathcal{K}\to [\mathcal{K}^\mathrm{op},\mathcal{V}]$ has a Φ-continuous left adjoint.

Axiom C holds for presheaf categories and, when $V =$ Set, Grothendieck topoi.

- We continue with V-categories and a class of limits Φ satisfying axiom A
- We replace our base category given by axiom B with...

(axiom C) fix a $\mathcal V$ -category $\mathcal K$ with Φ-limits such that $y: \mathcal{K} \to [\mathcal{K}^{\text{op}}, \mathcal{V}]$ has a Φ -continuous left adjoint.

Axiom C holds for presheaf categories and, when $V =$ Set, Grothendieck topoi.

(def) A Φ -theory is a small V-category with Φ -limits

In our new context, we have the following two categories

$$
\Phi\text{-}\mathsf{Th} \coloneqq \left\{ \begin{array}{cl} \textbf{(objects)} & \Phi\text{-theories} \\ \textbf{(morphisms)} & \text{evident functors} \end{array} \right.
$$

 Φ -Mod $(\mathcal{T}) := \Phi$ -Cts $(\mathcal{T}, \mathcal{K})$

(def) A Φ -theory is a small *V*-category with Φ -limits

In our new context, we have the following two categories

$$
\Phi\text{-}\mathsf{Th} := \left\{ \begin{array}{ll} \textbf{(objects)} & \Phi\text{-theories} \\ \textbf{(morphisms)} & \text{evident functors} \\ \Phi\text{-}\mathsf{Mod}(\mathcal{T}) := \Phi\text{-}\mathsf{Cts}(\mathcal{T},\mathcal{K}) \end{array} \right.
$$

adjoints and reflexivity – algebraic functors

(def) An algebraic functor is the pullback functor g^* : Φ- $\textsf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\textsf{-} \textsf{Cts}(\mathcal{S},\mathcal{K})$

induced from a morphism of Φ -theories $g: \mathcal{S} \to \mathcal{T}$.

These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map $F \mapsto \textsf{Lan}_{g} F$ gives a functor $g_* : \Phi\text{-} \mathsf{Cts}(S,\mathcal{K}) \to \Phi\text{-} \mathsf{Cts}(\mathcal{T},\mathcal{K})$ Here's a depiction of the scenario: $\mathcal{S} \xrightarrow{\quad F \quad} \mathcal{K}$ $g \searrow g_*(F) = \text{Lan}_g F$ 19

adjoints and reflexivity – algebraic functors

(def) An algebraic functor is the pullback functor g^* : Φ- $\textsf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\textsf{-} \textsf{Cts}(\mathcal{S},\mathcal{K})$

induced from a morphism of Φ -theories $g: \mathcal{S} \to \mathcal{T}$.

These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map $F \mapsto \text{Lan}_F F$ gives a functor $g_* : \Phi\text{-} \mathsf{Cts}(S,\mathcal{K}) \to \Phi\text{-} \mathsf{Cts}(\mathcal{T},\mathcal{K})$ Here's a depiction of the scenario: $\mathcal{S} \xrightarrow{\qquad F} \mathcal{K}$ \mathcal{I} $g \searrow g_*(F) = \textsf{Lan}_g F$ 19

A theorem

Theorem 5.2 in Lack and Rosicky

Φ-Cts(\mathcal{T}, \mathcal{K}) is reflective in $[\mathcal{T}, \mathcal{K}]$

(pf)

• Φ -Cts(FT , K) \simeq [T, K] from the free/forgetful adjunction

- $\mathcal T$ has Φ -limits, hence $\mathcal T \hookrightarrow \mathcal FT$ has a right adjoint r.
- The induced algebraic functor

 r^* : Φ-Cts $(\mathcal{T}, \mathcal{K}) \to \Phi$ -Cts $(\mathcal{FT}, \mathcal{K}) \simeq [\mathcal{T}, \mathcal{K}]$

Theorem 5.2 in Lack and Rosicky

Φ-Cts(\mathcal{T}, \mathcal{K}) is reflective in $[\mathcal{T}, \mathcal{K}]$

(pf)

• Φ-Cts $(\mathcal{FT}, \mathcal{K}) \simeq [\mathcal{T}, \mathcal{K}]$ from the free/forgetful adjunction

- $\mathcal T$ has Φ -limits, hence $\mathcal T \hookrightarrow \mathcal FT$ has a right adjoint r.
- The induced algebraic functor

 r^* : Φ-Cts $(\mathcal{T}, \mathcal{K}) \to \Phi$ -Cts $(\mathcal{FT}, \mathcal{K}) \simeq [\mathcal{T}, \mathcal{K}]$

Theorem 5.2 in Lack and Rosicky

Φ-Cts(\mathcal{T}, \mathcal{K}) is reflective in $[\mathcal{T}, \mathcal{K}]$

(pf)

• Φ -Cts(FT , K) \simeq [T, K] from the free/forgetful adjunction

- T has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

 r^* : Φ-Cts $(\mathcal{T}, \mathcal{K}) \to \Phi$ -Cts $(\mathcal{FT}, \mathcal{K}) \simeq [\mathcal{T}, \mathcal{K}]$

Theorem 5.2 in Lack and Rosicky

Φ-Cts(\mathcal{T}, \mathcal{K}) is reflective in $[\mathcal{T}, \mathcal{K}]$

(pf)

• Φ -Cts(FT , K) \simeq [T, K] from the free/forgetful adjunction

- T has Φ -limits, hence $\mathcal{T} \hookrightarrow \mathcal{FT}$ has a right adjoint r.
- The induced algebraic functor

$$
r^*\colon \Phi\text{-}\mathbf{Cts}(\mathcal{T},\mathcal{K}) \to \Phi\text{-}\mathbf{Cts}(\mathcal{FT},\mathcal{K}) \simeq [\mathcal{T},\mathcal{K}]
$$

thank you