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— everything enriched

Properties of classical Lawvere theory to retain
— Lawvere theory - monad correspondence

— algebraic functors have left adjoints

— reflectiveness of models
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The terminology of presentability

Let ® be a class of limits

(def) A C-object x is d-presentable if
C(x,—): C — Set

preserves any colimit that commutes with limits in .

Denote the full subcategory of ®-presentable objects by Cg.



replacing finite products



replacing finite products — setup

We are now entering the world of V-categories where

e )V is symmetric closed monoidal plus complete and
co-complete
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replacing finite products — setup

We are now entering the world of V-categories where

e )V is symmetric closed monoidal plus complete and
co-complete

e & is a class of weights,
L functors J°P — V required to define enriched (co)limits

(?) In order to construct an analogy

classical Lawvere theory <> general Lawvere theory

finite products ®-limits

what should ®-limits be?
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replacing finite products — assumptions made

(axiom A) All ®-limits commute in V with colimits that have
®-continuous weights.

This is an abstraction of

e finite limits commuting with filtered colimits in Set

What ¢ satisfies axiom A?



replacing finite products — satisfying axiom A

Given a collection D of small categories that satisfy some axioms,
we can construct viable ®.



replacing finite products — satisfying axiom A

Given a collection D of small categories that satisfy some axioms,
we can construct viable ®.

no time for that...

Instead, here is an example

’ (ex) (D = finite categories) = (P = enriched finite limits) ‘




a correspondence between
Lawvere ®-theories & monads
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Lawvere ®-theories & monads — setting the stage

So far, we have

replaced ordinary categories with V-categories
— and —

replaced finite products with ®-limits via axiom A
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Lawvere ®-theories & monads — setting the stage

So far, we have

replaced ordinary categories with V-categories
— and —

replaced finite products with ®-limits via axiom A

To obtain the Lawvere theory-monad correspondence, we
generalize the base category by assuming...

(axiom B) fix a V-category K with finite limits and is equivalent
to ¢—Cts(lC¢, V)
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Lawvere ®-theories & monads — three categories

(def) A Lawvere ®-theory is a V-functor Kg — T that is
bijective-on-objects and ®-continuous
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Lawvere ®-theories & monads — three categories

(def) A Lawvere ®-theory is a V-functor Kg — T that is
bijective-on-objects and ®-continuous

bject L ®-theori
Lawo (K) = (objec s) awvere. ?orles
(morphisms) commuting triangles
For a Lawvere theory ICip —T
(objects) V-functors T — K s.t.
Mode(7,K) = K& — T — K is ®-continuous.
(morphisms) appropriate natural transformations
(objects) V-monads on K that preserve
Mndy (K) = ®-flat colimits.

(morphisms) appropriate natural transformations
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Lawvere ®-theories & monads — the equivalence

First, we define a functor mnd: Lawe(K) — Mnde (K)
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First, we define a functor mnd: Lawe(K) — Mnde (K)

(Prop 6.6 in Lack & Rosicky)

Mods (7, K) [T,V] The diagram is a pullback
”J l[" v and u is monadic via a
. monad m that preserves
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K —— [KP, V] — [K¢pvv] o-flat colimits.
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Lawvere ®-theories & monads — the equivalence

First, we define a functor mnd: Lawe(K) — Mnde (K)

(Prop 6.6 in Lack & Rosicky)

Mods (7, K) [T,V] The diagram is a pullback
”J l[" v and u is monadic via a
. monad m that preserves

y o L O
K —— [KP, V] — [K¢pvv] o-flat colimits.

Define mnd(7") := m.
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K—-K"=K
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Lawvere ®-theories & monads — the equivalence

Let’s define another functor th: Mnde(K) — Lawe(K)
(1st) Factor m € Mndg(K) through the EM-category
K—-K"=K
(2nd) Restrict the first V-functor to Ko
f: Ko =K —= K"
(3rd) Note that f factors (uniquely up to unique iso)
g full and faithful

I e
bijective-on-objects
Ko ; xm

Define th(m) = (K £ Gop).
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Lawvere ®-theories & monads — the equivalence

A theorem

There is an equivalence

ii5)



adjoints to algebraic functors & reflectivity
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adjoints and reflectivity — ®-theories

e We continue with V-categories and a class of limits ® satisfying
axiom A
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adjoints and reflectivity — ®-theories

e We continue with V-categories and a class of limits ® satisfying

axiom A

e We replace our base category given by axiom B with...

(axiom C) fix a V-category K with ®-limits such that
y: K — [K°P, V] has a ®-continuous left adjoint.

Axiom C holds for presheaf categories and, when VV = Set,
Grothendieck topoi.
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adjoints and reflectivity — a new notion of theory

(def) A ®-theory is a small V-category with ®-limits
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adjoints and reflectivity — a new notion of theory

(def) A ®-theory is a small V-category with ®-limits
In our new context, we have the following two categories

&-Th = (ObjeCts) ®-theories
o (morphisms)  evident functors

®-Mod(T) = ¢-Cts(T, K)
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adjoints and reflexivity — algebraic functors

(def) An algebraic functor is the pullback functor
g": »-Cts(7,K) — d-Cts(S, K)

induced from a morphism of ®-theories g: S — 7.
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adjoints and reflexivity — algebraic functors

(def) An algebraic functor is the pullback functor
g": »-Cts(7,K) — d-Cts(S, K)

induced from a morphism of ®-theories g: S — 7.
These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map F — Lang F gives a functor

g«: $-Cts(S,K) — d-Cts(T, K)

s—F -k

Here's a depiction of the scenario: \ / e (F) =

= lang F
19



adjoints and reflectivity — algebraic functors

A theorem

A ®-theory morphism g: S — T induces an adjunction

*

g
/\
®-Cts(7T,K) L -Cts(S,K)
‘\_/
8«
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adjoints and reflectivity — models are reflective

Theorem 5.2 in Lack and Rosicky

’ ®-Cts(7, K) is reflective in [T, K]
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adjoints and reflectivity — models are reflective

Theorem 5.2 in Lack and Rosicky

’ ®-Cts(7, K) is reflective in [T, K]

(pf)
o O-Cts(FT,K) =~ [T,K] from the free/forgetful adjunction

V5
T
V-Cat L V-Cat(d-lim)
~_
u

e 7 has ®-limits, hence 7 — F7T has a right adjoint r.

e The induced algebraic functor
r*: ©-Cts(7,K) — o-Cts(FT,K) ~ [T,K]

has a left adjoint. 0O 21



thank you

22



