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what do we hope to achieve?

2



Goals of Notions – generalize it

Three tracks of generalization
– replace finite products with another class

– replace the base category in which models are taken

– everything enriched

Properties of classical Lawvere theory to retain
– Lawvere theory - monad correspondence

– algebraic functors have left adjoints

– reflectiveness of models
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the terminology of presentability
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The terminology of presentability

Let Φ be a class of limits

(def) A C-object x is Φ-presentable if

C(x ,−) : C→ Set

preserves any colimit that commutes with limits in Φ.

Denote the full subcategory of Φ-presentable objects by CΦ.
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replacing finite products
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replacing finite products – setup

We are now entering the world of V-categories where

• V is symmetric closed monoidal plus complete and

co-complete

• Φ is a class of weights,

�

functors Jop → V required to define enriched (co)limits

(?) In order to construct an analogy

classical Lawvere theory ↔ general Lawvere theory

finite products Φ-limits

what should Φ-limits be?
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replacing finite products – assumptions made

(axiom A) All Φ-limits commute in V with colimits that have

Φ-continuous weights.

This is an abstraction of

• finite limits commuting with filtered colimits in Set

What Φ satisfies axiom A?
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replacing finite products – satisfying axiom A

Given a collection D of small categories that satisfy some axioms,

we can construct viable Φ.

no time for that...

Instead, here is an example

(ex) (D := finite categories) ⇒ (Φ = enriched finite limits)
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a correspondence between

Lawvere Φ-theories & monads
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Lawvere Φ-theories & monads – setting the stage

So far, we have

replaced ordinary categories with V-categories

— and —

replaced finite products with Φ-limits via axiom A

To obtain the Lawvere theory-monad correspondence, we

generalize the base category by assuming...

(axiom B) fix a V-category K with finite limits and is equivalent

to Φ-Cts(KΦ,V)
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Lawvere Φ-theories & monads – three categories

(def) A Lawvere Φ-theory is a V-functor Kop
Φ → T that is

bijective-on-objects and Φ-continuous

LawΦ(K) :=

{
(objects) Lawvere Φ-theories

(morphisms) commuting triangles

For a Lawvere theory Kop
Φ → T

ModΦ(T ,K) :=


(objects) V-functors T → K s.t.

Kop
Φ → T → K is Φ-continuous.

(morphisms) appropriate natural transformations

MndΦ(K) :=


(objects) V-monads on K that preserve

Φ-flat colimits.

(morphisms) appropriate natural transformations
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Lawvere Φ-theories & monads – the equivalence

First, we define a functor mnd: LawΦ(K)→MndΦ(K)

(Prop 6.6 in Lack & Rosicky)

ModΦ(T ,K)

K

[T ,V]

[Kop
Φ ,V][Kop,V]

u

y

[j ,V ]

ι∗

The diagram is a pullback

and u is monadic via a

monad m that preserves

Φ-flat colimits.

Define mnd(T ) := m.
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Lawvere Φ-theories & monads – the equivalence

Let’s define another functor th : MndΦ(K)→ LawΦ(K)

(1st) Factor m ∈MndΦ(K) through the EM-category

K → Km → K

(2nd) Restrict the first V-functor to KΦ

f : KΦ → K → Km

(3rd) Note that f factors (uniquely up to unique iso)

KΦ

G

Km

f

` r
bijective-on-objects

full and faithful

Define th(m) := (Kop
Φ

`op

−−→ Gop).
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Lawvere Φ-theories & monads – the equivalence

A theorem

There is an equivalence

LawΦ(K) MndΦ(K)'

mnd

th
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adjoints to algebraic functors & reflectivity
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adjoints and reflectivity – Φ-theories

• We continue with V-categories and a class of limits Φ satisfying

axiom A

• We replace our base category given by axiom B with...

(axiom C) fix a V-category K with Φ-limits such that

y : K → [Kop,V] has a Φ-continuous left adjoint.

Axiom C holds for presheaf categories and, when V = Set,

Grothendieck topoi.
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adjoints and reflectivity – a new notion of theory

(def) A Φ-theory is a small V-category with Φ-limits

In our new context, we have the following two categories

Φ-Th :=

{
(objects) Φ-theories

(morphisms) evident functors

Φ-Mod(T ) := Φ-Cts(T ,K)
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adjoints and reflexivity – algebraic functors

(def) An algebraic functor is the pullback functor

g∗ : Φ-Cts(T ,K)→ Φ-Cts(S,K)

induced from a morphism of Φ-theories g : S → T .

These have left adjoints constructed from left Kan extensions.

Theorem 5.1 in Lack & Rosicky

The map F 7→ Lang F gives a functor

g∗ : Φ-Cts(S,K)→ Φ-Cts(T ,K)

Here’s a depiction of the scenario:
S

T

K
g

F

g∗(F ) = Lang F
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adjoints and reflectivity – algebraic functors

A theorem

A Φ-theory morphism g : S → T induces an adjunction

Φ-Cts(T ,K) Φ-Cts(S,K)⊥

g∗

g∗

20



adjoints and reflectivity – models are reflective

Theorem 5.2 in Lack and Rosicky

Φ-Cts(T ,K) is reflective in [T ,K]

(pf)

• Φ-Cts(FT ,K) ' [T ,K] from the free/forgetful adjunction

V-Cat V-Cat(Φ-lim)⊥

F

U

• T has Φ-limits, hence T ↪→ FT has a right adjoint r .

• The induced algebraic functor

r∗ : Φ-Cts(T ,K)→ Φ-Cts(FT ,K) ' [T ,K]

has a left adjoint. 21
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thank you
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